有限元分析(FEA)是一種基于計算機的工具,用于近似解決其他無法解決的問題。它通常用于結構工程,但也用于流體力學和熱流等其他問題。實際應用中的大多數數學問題實際上是,有限元分析是一種數值分析方法,而不是一種獲得可接...
有限元分析(FEA)是一種基于計算機的工具,用于近似解決其他無法解決的問題。它通常用于結構工程,但也用于流體力學和熱流等其他問題。實際應用中的大多數數學問題實際上是,有限元分析是一種數值分析方法,而不是一種獲得可接受的精確解的分析技術;它的工作原理是把一個復雜的問題分解成許多簡單的問題。
![]()
工人分析法涉及到解決一個數學問題,以給出一個完美的、連續的解。換句話說,解是一個變量的函數,而不是一個數值逼近。沒有估計或誤差的程度在對一個給定方程的解析解中,對于模擬現實世界問題的公式,通常沒有已知的解析解。這些需要用數值方法來獲得近似解,有限元分析就是一個例子。有限元分析依賴于將一個復雜的問題分解成一個大的問題不太復雜的問題的數量。當問題的解決方案表現出非常復雜的行為時,應用簡化有時是可以接受的。但是,通常情況下,廣泛的簡化會引入太多的錯誤,而這是將問題分解成許多單獨的問題時會有幫助的。每個問題的簡化解決方案在有限元分析中,一個問題的域被分解成許多更小的區域,稱為單元,單元的集合體稱為網格對許多不同元素進行積分或求和的過程,是因為元素在邊界上的相互作用方式。當元素的邊界相互作用被理解時,計算機可以將近似解從一個元素擴展到下一個元素。最后,計算機將"建立"一個近似解,即非常接近真實世界的行為。有限元分析通常解決的一個問題是固體金屬片內的應力分布。當金屬或任何類似的材料受到力時,物體的每個部分都有一定的應力。即使已知所施加的力,形狀不規則的物體通常過于復雜,無法準確了解內應力的分布,有限元分析可以用來計算這個問題的一個近似解,然后可以使用可視化軟件將這些信息收集到一個直觀和連貫的圖像中。