不管是常微分方程還是偏微分方程,關于微分方程的階數的定義都是一樣的,一個微分方程的階數取決于方程中出現的未知數的最高階導數,也就是說,這個最高階導數的階數就是微分方程的階數。
在方程中,最高階導數可以是常規的n階導數,也可以是n階偏導數或者n階混合偏導數,這個并不影響判斷導數的階數。
如果出現多個函數的導數相乘的情況,那么所得該項的導數應該等于相乘的多個函數的導數的階數之和,例如,方程中如果出現(df/dx)(dg/dx)這一項,那么這一項的階數并不是1,正確的階數應該是2,因為這是兩個一階導數的乘積。
另外,還有一個簡單的技巧可以判斷一個微分方程的階數,首先將所得微分方程化為標準形式,然后比較微分方程中各項式子里分母和分子同時含有的d或?的個數,最高個數就是該微分方程的階數。
判斷微分方程階數的時候,一定要將各項分開來看,也就是說,在有括號的時候要將括號拆開來看,不然很容易判斷錯誤。
0 篇文章
如果覺得我的文章對您有用,請隨意打賞。你的支持將鼓勵我繼續創作!