• <noscript id="ecgc0"><kbd id="ecgc0"></kbd></noscript>
    <menu id="ecgc0"></menu>
  • <tt id="ecgc0"></tt>

    人類的智商終于敵不過機器了?

    早在100多年前,德國心理學家William Stern就推出了IQ測試,用來測量人們的智力。從此以后,IQ測試結果就成為現代生活中判定孩子學習能力以及成年人工作能力的一種標準。

    IQ測試通常包括三類問題,即邏輯問題(如圖形推理)、數學問題(如發現數列規律)以及文字推理類問題,這些問題都是基于類比、分類、同義詞或反義詞設置。

    正是文字推理類問題吸引了中國科技大學的王華正(Huazheng Wang)等以及北京微軟研究院的高斌等研究人員。電腦向來不擅長文字推理類問題,在一個自然語言處理機器里輸入文字推理類問題,機器的表現會很糟糕,甚至與一般人的能力相比都相距甚遠。

    而現在,這一切都在發生著改變。研究人員研發的深度學習機器在處理文字類推理問題方面的能力已經首次超過了一般人。

    將語言問題變成數學問題

    最近幾年,電腦科學家通過使用數據挖掘技術分析巨大的文本語料庫,以發現語料之間的聯系。這尤其給王華正等科學家統計單詞出現模式帶來了極大的便利,比如某個特定的詞在其他詞前后出現的頻率。這就使得在巨大的參數空間里,理清單詞之間的關系成為了可能。

    這樣,在這個高緯度空間里就可以將單詞看做一個個向量,像其他向量一樣,可以使用比較、增值以及減值等數學方法進行處理。這樣就會得到諸如下面的向量關系:國王—男人+女人=女王。

    這個方法現在已經取得重大成功。谷歌假設相近向量代表的不同語言詞序列在意思上是對等的,實現了語言自動翻譯。

    但是,這種方法有一個顯著的缺陷,即假設中,每個單詞的含義均由單一向量指代,因此單詞的含義也是單一的。而文字測試傾向于使用多義詞增加問題的難度。

    王華正等人通過查找單詞在語料庫中的常見搭配解決了這一問題。接下來他們運用運算法則觀察這些單詞的分布。最后通過詞典查出單詞的不同含義,并將這些不同含義與不同分布的同一單詞對應聯系起來。

    因為字典釋義里本身就包含單詞不同釋義的例句,因此這個步驟可以自動完成。通過分析這些句子里的向量表示,并且將它們與每個分布點的向量表示進行比較,就可能實現它們的對應。

    總體來說,這種方法就是鑒別單詞的不同含義。


    除了上述方法,還有其他妙招用來提升電腦處理文字推理問題的能力。妙招的關鍵點在于這些推理類問題可以進行分類,可用用略微不同的方法進行處理。

    因此,他們想到如果電腦可以辨別出問題的類型,就可以選擇適當的處理策略。因為同一類型的問題具有相似的結構,所以這個方法就顯得簡單快捷。

    類比問題如下:

    1.等溫線之于溫度相當于等壓線之于()?

    A.大氣       B. 風      C. 壓力       D. 高度

    2.從括號中選出能與大寫英文單詞搭配的一個英文單詞()?

    A. CHAPTER (book, verse, read)        B. ACT (stage, audience, play)

    單詞分類問題如下:

    1.從以下選項中選出不同的一項()。

    A.Calm   B. Quiet   C. Relaxed  D. Serene   E. Unruffled.

    同義詞與反義詞問題如下:

    1.從以下選項中選出與英文單詞irrational意思最接近的一項()。

    A. intransigent   B. irredeemable   C. unsafe   D. lost E. nonsensical

    2. 從以下選項中選出與musical意思相反的一項()。

    A. discordant   B. loud    C. lyrical     D. verbal     E. euphonious

    對掌握算法的機器來說,只要提供足夠的學習樣本,對問題類型的識別就會相對簡單。這也正是王華正等人正在研究的事。

    識別出問題類型之后,王華正等人采用標準向量法為每個類型問題的處理設置了運算法則。他們采用的標準向量法是自己研發的多義升級。

    介于學士與碩士之間

    他們將這種深度學習方法與其他能夠處理文字推理的算法以及人類處理文字推理的能力進行了比較。然而,結果十分驚人。“出乎我們意料的是人類的平均表現竟比不過深度學習機器”。

    人類在這些測試中的表現往往跟他們的教育背景有關。因此,擁本科學歷的人比擁有高中學歷的人表現要好,擁有博士學歷的表現最好。王華正等人稱他們的深度學習機器模型智力水平介于學士和碩士之間。

    深度學習機器的出色表現足以說明深度學習方法的發展潛力。王華正等人對于該方法未來的發展充滿自信,他們稱,只要正確運用深度學習方法,在探究人類真正智力水平方面就會有進一步發展。

    如今,雖然深度學習方法已經如同星星之火席卷了整個計算機科學領域,但是它所引起的革命仍然處于起步階段。誰都不知道這場革命將會把我們帶到何處,但有一點可以確定的是:William Stern對這一切也不得不嘆服。

    (via techreview)

    • 發表于 2015-06-28 00:00
    • 閱讀 ( 681 )
    • 分類:其他類型

    你可能感興趣的文章

    相關問題

    0 條評論

    請先 登錄 后評論
    admin
    admin

    0 篇文章

    作家榜 ?

    1. xiaonan123 189 文章
    2. 湯依妹兒 97 文章
    3. luogf229 46 文章
    4. jy02406749 45 文章
    5. 小凡 34 文章
    6. Daisy萌 32 文章
    7. 我的QQ3117863681 24 文章
    8. 華志健 23 文章

    聯系我們:uytrv@hotmail.com 問答工具
  • <noscript id="ecgc0"><kbd id="ecgc0"></kbd></noscript>
    <menu id="ecgc0"></menu>
  • <tt id="ecgc0"></tt>
    久久久久精品国产麻豆